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ever before. Currently, coastal communities face urgent needs for

operational decision-support tools that provide accurate

performance assessments of infrastructures under multi-

hazard actions (Tilloy et al., 2019). Resilience and

sustainability are the fundamental requirements for modern

infrastructures, and major progress has been made in disaster

risk management (e.g., Bruneau and Reinhorn, 2007; Ayyub,

2014; Bozza et al., 2015; UNDRR, 2022). A key to achieving

effective disaster resilience and sustainability is implementing a

holistic risk management strategy that integrates all phases of a

disaster cycle (i.e., mitigation, preparedness, response, and

recovery) across different administrative levels.

Natural catastrophe modelling offers a versatile platform for

calculating the economic loss due to natural disasters (Woo,

2011; Mitchell-Wallace et al., 2017). It has become a vital tool not

only for the insurance and reinsurance industry but also for

governmental agencies that are responsible for implementing

disaster risk management policies at local, regional, and national

levels. Key elements of quantitative risk assessments are hazard,

exposure, and vulnerability, and uncertainties associated with

these components are integrated into the final risk assessments

(Beven et al., 2018; Foulser-Piggott et al., 2020). Standard outputs

from catastrophe models are often obtained as exceedance

probability (EP) curve and annual expected loss (AEL). These

outputs inform disaster risk reduction policies and help take

mitigation actions from socioeconomic and financial

perspectives. Furthermore, these risk outputs can be used to

identify critical scenarios based on quantified risk metrics and to

generate a set of hazard and risk maps that correspond to the

identified scenarios (Goda et al., 2021). Such integrated use of the

catastrophe model outputs will enhance the current selection of

critical scenarios, typically done deterministically in an ad-hoc

manner.

Conventional risk assessments focus on individual hazards in

isolation, and uncertainty associated with such events is not

characterized and propagated comprehensively (Gill and

Malamud, 2014, 2016; Beven et al., 2018b). A probabilistic

multi-hazard analysis quantifies disaster risks and facilitates

the evaluation of the cost-benefit effectiveness of available risk

mitigation options (Scolobig et al., 2017; Akiyama et al., 2020).

Several recent studies have proposed multi-risk approaches

(
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based approaches can simulate ground motion time-series at the
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distribution of earthquake slip; Geist, 2002; Davies et al., 2015;

Melgar et al., 2019). The latter can be typically carried out by

generating numerous stochastic source models with varying

geometry and slip distributions (Goda et al., 2016). It is

important to note that both occurrence and rupture models

are common to earthquakes and tsunamis. Empirical tsunami

fragility and vulnerability functions can be used to quantify the

expected damage or loss due to tsunamis (Tarbotton et al., 2015;

Macabuag et al., 2016). The integration of PTHA and tsunami

vulnerability has led to the development of performance-based

tsunami engineering (PBTE) approaches (Attary et al., 2017;

Goda and De Risi, 2017).

Using stochastic source models, a computational flow of the

PBTE framework is shown in Figure 2, and can be formulated as

(Goda and De Risi, 2017):

]T(L≥ l) � λMmin ∫PT(L≥ l|ds)fDS|IM(ds|im)fIM|S(im|s)f| Sds

� |
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will be subjected to both types of external loads, and the

cumulative effects of shaking and tsunami damage can

exacerbate the consequences (Park et al., 2012; Attary et al.,

2021). Generally speaking, ground motion hazards at a fi
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more destruction along the coast than shaking when the

seismic event is significant in magnitude (see panel 5),

noting that the tsunami impact significantly depends on

local topography. On the other hand, the shaking impact is

relatively less destructive because of relatively larger

distance between the causative fault rupture and

buildings (Goda and Atkinson, 2014). Historical
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3.2.4 Risk integration
To combine the outputs from the three modules, for each

event in the stochastic event catalogs from Section 3.2.1, the

single-hazard and multi-hazard loss values are sampled from the

conditional loss distribution that corresponds to the event’s

magnitude (from Section 3.2.3). By repeating this sampling for

all events in a single stochastic catalog, one sample of the multi-

hazard loss can be obtained. This process of Monte Carlo

sampling can be iterated for all generated stochastic event

catalogs, and the results can be summarized as a multi-hazard

EP loss curve. These simulated samples of the multi-hazard loss

can be used to quantify several risk metrics, such as AEL and

VaR, for making risk management decisions. Individual loss

results for shaking and tsunami risks are retained for the

post-processing, noting that single-hazard EP curves and risk

metrics can also be obtained as part of the catastrophe model

output. An advantage of the proposed method is the

computational efficiency. Although performing several

thousands of tsunami inundation simulations require a high

computing capacity and resource, this usually does not

become a significant obstacle because the tsunami simulation

based on shallow water theory is computationally less expensive

than solving the governing equations in 3D (i.e., Navier-Stokes

equations) or conducting 3D seismic ground motion simulations

(Graves and Pitarka, 2010; Frankel et al., 2018). The decoupled

approach to earthquake occurrence and the multi-hazard impact

simulation also achieves a high computational efficiency when

numerous kinds of earthquake occurrence models are considered

in the risk assessments.

To illustrate the above-mentioned multi-hazard risk

approach, a regional seismic-tsunami loss that was obtained

for the southern part of Miyagi Prefecture, Japan, is

considered. Figure 5 shows an example of multi-hazard loss

curves and joint multi-hazard maps for shaking and tsunami

risks, which are modified from Goda and De Risi (2018).

Using the multi-hazard loss curve (blue line in the central

panel), the overall risk level for the considered building

portfolio (i.e., 6,096 wooden houses) can be quantified. For

each point on the loss curve at a selected return period level

(e.g., 100 and 500 years return periods on the top and bottom

rows, respectively), a corresponding earthquake rupture

scenario can be referenced, and joint shaking and tsunami

inundation hazard maps can be drawn. Such joint mapping of

the multi-hazard intensities is useful for visualizing multi-

hazard scenarios and communicating risk assessment results

with stakeholders. The results can be presented for different

hazard and risk quantities, such as damage states and losses of

buildings (Goda et al., 2021). These scenarios can be further

linked with evacuation simulation results to convey a range of

multi-hazard risk results under different scenarios

(Muhammad et al., 2021). The versatility and extendibility
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education). Protection via physical measures is the primary

approach for controlling disaster risks to built environments,

and building codes have played a key role (Chock, 2016). In

promoting more resilient building design and construction

practices, the life-cycle cost-benefit assessments based on

suitable catastrophe models are essential (Liel and Deierlein,

2013; Akiyama et al., 2020), and quantitative comparisons of the

benefits and costs facilitate the more efficient use of available

resources and budgets for disaster risk reduction.

Improving the accuracy of the hazard and risk assessment

methods is important, which will eventually lead to enhanced

actions for risk mitigation. Developing new time-dependent

multi-hazard risk models for cascading and compounding

earthquake perils is an exemplar (Section 3). A critical
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and Malamud (2014, 2016) demonstrated, hazard interactions,

which are likely to be affected by natural, anthropogenic, and

technological processes, are complex. In the above context,

natural hazards are not limited to geological risks (strong

motion, tsunami, landslide, liquefaction, and aftershock) but

include meteorological and climate risks. To visualize the

complex multi-hazard interaction and its impact on the built

environment, Dunant et al. (2021) utilized a graph theory

combined with a probabilistic multi-hazard catastrophe model

for earthquake and rainfall-triggered landslides. Their results

demonstrated that the primary risk in the case study area is

affected by earthquakes. In contrast, in extreme situations,

landslide risks triggered by either heavy rainfalls or major

earthquakes become important and increase overall risks due

to hazard interaction.

4.3 Response

The response phase of the disaster management cycle strives to

minimize the hazard impacts created by a disaster and can involve

search and rescue, emergency relief, early warning announcement

and evacuation, and rapid risk assessment. In implementing disaster

risk reduction actions for this phase, it is important to consider the

impact to human fatalities (Latcharote et al., 2018), in addition to

https://www.frontiersin.org/journals/built-environment
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insurance coverage is not widely offered for coastal areas that are

exposed to potential tsunami risks. The development of tsunami

insurance products requires the fair quantification of tsunami

risks for their pricing. In this regard, capable tsunami catastrophe

models are essential (Song and Goda, 2019). Furthermore, when

multi-hazard insurance products for shaking and tsunami risks

are to be offered, accurate multi-hazard catastrophe models will

be needed to differentiate insurance rates for multi-hazard

shaking-tsunami loss coverage by focusing on strong shaking

intensity and effects of land elevation and topography.

To mitigate the economic impact of catastrophic shaking-

tsunami hazards for insurers and local/central governments,

financial risk transfer instruments offer alternative ways to

diversify the financial risk exposures due to natural catastrophes.

For instance, the insurance/reinsurance industry and governments

can use parametric catastrophe bonds to transfer catastrophic risks

to thefinancialmarkets (Goda, 2015; Goda, 2021). The advantages of

the parametric catastrophe bonds are low moral hazard (Cummins,

2008
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